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ABSTRACT

The technique of modal synthesis is applied to find the natural

frequencies of space stations. The station is modeled as an assemblage of

rigid modules, joined by massless elastic constraints, and flexible modules

characterized by deformation functions. The equations of motion are de-

rived and system mass and stiffness matrices derived. The method is

applied to the Skylab orbiting space station. The frequencies of the lowest

65 modes are given and selected mode shapes illustrated. The technique

is feasible for analysis of a complex system and suitable for response

studies including damping and attitude control system effects.



NOMENCLATURE

an coefficient of deformation function

B body

K, Kmn stiffness matrix and submatrices

position vector of origin of secondary rigid module frame

M, Mmn mass matrix and submatrices

q row vecotr of generalized coordinates

r displacement vector

position vector of origin of frame in flexible module

T, V

x

y

Subscripts

i

j
0

kinetic and potential energy

position vector of mass point in flexible module

elastic displacement vector

rotation vector of rigid module

deformation function

angular velocity

secondary rigid module

flexible module

primary rigid module
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Introduction

Because of their structural complexity, space stations present diffi-

culties for the traditional methods of vibrational analysis. The large number

of members in these structures present a challenge for accurate mathemati-

cal modeling in order that digital computer techniques may be applied with

reasonable core storage requirements and execution times. In addition,

space stations are typically composed of structural modules with widely

varying flexibilities. Long arrays of solar cell units are attached to rela-

tively massive space vehicles. This situation can lead to numerical inaccu-

racy in the solution procedure. The formulation of the problem must avoid

the pitfall of overshadowing the stiffness properties of the more flexible

members by the stiff members. In addition, the choice of generalized coor-

dinates for the model must be made so that low-frequency behavior is accu-

rately described without using too many of the number of available degrees

of freedom for higher frequency motion of the stiff members.

This paper presents a vibration analysis of a large space station. A

number of papers have appeared on methods of analysis for structural sys-

tems (for example Ref. 1). However, the literature on the actual solution

of a complex three-dimensional system with many components appears to be

sparse. In Ref. 2 an analysis of a cruciform satellite, consisting of a hub

with four cantilevered solar arrays, :is given. The present paper discusses

the solution for the modes and frequencies of a space station consisting of a

number of clustered modules with appended flexible structures. The solution

is given for a particular configuration of three modules with seven attached

elastic structures.

In modal synthesis methods component or substructure displacement

functions are used to model the entire assembly. In applying modal synthesis

*Iesearch Specialist in Structural Dynamics. The paper describes work
done under NASA Contract NAS8-20082 while the quthor was an employee

of Lockheed Missiles & Space Co., Huntsville, Ala!
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to space stations, the key to formulating a model of manageable size which

will accurately represent low-frequency behavior is the proper selection of

substructure displacement functions to use as generalized coordinates of

the system.

The assumption was made that the space station consisted of both rigid

and flexible modules, interfacing at planar surfaces. This assumption is

suitable for clustered space structures where the requirements of small

launch volume lead to docking and deployment of modules and subsystems,

so that interfacing is confined to localized areas. For such a situation it is a

valid approximation to consider the flexibility lumped at the interface. The

rigid substructures are characterized by natural frequencies well above the

highest frequency of interest for the complete space station model. The

deformation functions for these bodies are the six rigid-body motions.

The flexible substructures are restricted to cantilevered structures

characterized by low frequencies, such as deployable solar arrays. The

deformation functions for these bodies are elastic displacement functions,

such as natural mode shapes or static responses to inertia loads.

Formulation of the Equations of Motion

From the preceding discussion it is apparent that the generalized

coordinates used to describe the motion of the space station will be either

rigid-body modes of modules or coefficients of displacement functions. If

the array of generalized coordinates is represented by the column matrix q, K

then the kinetic energy and the potential ener.gy, of the space station are

given by -

T = q Mq
(la)

VL .K . q (lb)

The elements of M and K are assumed constant. This assumption v /

is reasonable for obtaining short-term vibrational behavior after earth orbit

is obtained. When there are no applied forces or dissipative effects,

\'
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Lagrange's equation yields

M q + Kq= (2)

An assumed:harmonic solution of the form

q = u sinwt (3)

where M is a function of spatial variables, gives the linear eigenvalue

problem
i .

2 Mu -Ku = 0 (4)

Generalized Coordinates

One of the rigid bodies comprising the space station model is designated

as the primary module. A reference frame is fixed in it, with the displace-

ment and rotation of its origin described by ro,_ o with respect to inertial

space (see Fig. 1). A frame fixed in the i-th secondary rigid'module has

displacement and rotation vectors 'i,_s , defining motion relative to the

primary module. These coordinates describe the elastic motion of these

bodies, assuming they are attached to the primary module by massless

elastic constraints. The origin of each frame before deformation is located

relative to the origin of the main frame by i .

Reference frames for the flexible structures are established with their

origins at the interface between the flexible module and its supporting rigid

module. These frames are fixed in the rigid module and located in the rigid

module frame by oj (see Fig.)l). A point within the flexible module is located

by X in the frame for the flexible structure. Its displacement due to elastic

deformation is specified by y(x) where

Y, = an a n (xj (5)
L n

In this expression the ,, (X) are deformation functions of the flexible



4

component, such as natural mode shapes or static response to inertia loading;

the aA are constant coefficients. The summation is over the total number

of functions characterizing the j-th flexible module.

Therefore, the generalized coordinates for the complete space station

system are the components rT,, 9o, (n-l;L,3)of the rigid-body motion of the

primary module, the components (rL,, ,9in , n = 1,Z,) of motion of the secondary

rigid modules and the coefficients an of deformation functions for the flexible

structures. They are written as a row matrix q:

'I'q = 0o, , r., i (6)

Kinetic and Potential Energy

The total kinetic energy and potential energy of the space station

(Eqs. la, lb) are derived as a summation of the energies of individual

components.

The kinetic energy for a flexible component is written partly in terms

of its deformation functions and partly in terms of rigid-body motion of the

interface. The interface motion is not an independent coordinate, but is ex-

pressed in terms of the coordinates of the supporting module. The kinetic

energy will be derived for a flexible component Bj interfacing with a rigid

module BiE which, in turn, is attached to the free primary module Bo. This

configuration is the case, for example, for a solar array wing on a module

docked to another module as illustrated in Fig. 1.

The position vector r of a point in j __is

r, = L. t Ad . + X. + L5 \(7)
-o 11-3 (3

The kinetic energy dT' of the;mass point, in j is

dT. =r r dm (8)

where am is the mass at the point and a superscripted dot here denotes

inertial time derivative. Then
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T. = r rdm (9)

B.

In order to carry out the operations indicated in this equation, it is necessary

to use the relationship between time derivatives of a vector in a fixed and a

rotating frame. If there is a fixed frame and a frame which rotates with

respect to it with an angular velocity t_2, then a position vector c of a

point from the origin of the fixed frame may be written as

a = b +xc +c 

where b is a vector locating the origin of the rotating frame relative to the

origin of the fixed frame and c is a position vector in the rotating frame

(see Fig. 2). The time derivative a in the fixed frame is then given by

the formula

a = b+c (10)

where b is a time derivative in the fixed f ame and C is a time

derivative in the rotating frame.

, The velocity r may now be written from Eqs. (7)and(10})as

rr + 0 xL + r. +( +0 xs.+(O + 0) xx+ 'a St (xj
-o - 1 1 -J - -1 -J n

In this expression the convention for time derivatives has been used

that superscripted dots denote derivatives with respect to the frame in

which the vector is defined. Thus _ is the inertial time derivative, ;_

is in the frame in Si , and &j is with respect to the frame associated

with Pj . The angular velocity /o expresses time rates of change of the

orientation of Pio with respect to inertial space, and _, expresses time

rate of change with respect to 8o .

In the derivation of this expression the assumption of small deforma-

tions and angular rates has been used so that products of these terms have

been neglected. Furthermore, this assumption permits us to identify the

angular velocities, 2. , z , directly as time rates of change of the

angular orientation of the frame.
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From Eqs. 7, 9, and 11, the kinetic energy Tj for component 8l

may be formulated. The result is written as

rT M llM M13 M14 M15 lr \
o M2 2, M M 2 M5 - ---a

-o2 -

T. r. Ms M1 M1 r1*3~~ fir =

M

33 34 35 (12)

Symmetric M44 M 45 

n M 5 5 an

-In a sirilar way, the kinetic energy for each component of the entire

system may be derived, and the total energy and system mass matrix

formed by superposition.

While M is relatively dense, the system stiffness matrix 1

is relatively sparse. This characteristic is due to the definition of generalized

coordinates relative to the system of embedded frames, since they allow

expression of deformation within each component exclusive of rigid-body

motion.

Formation of the stiffness matrix'. K follows from derivation of the

system potential energy V . The potential energy is in the form

r 0 0 o

T I

V K= K0 r

e. JK3 4 4 4 -

I I
a 0 I 0 K 5 a

The. submatrices of K are of two types: those associated with rigid

module motion, described by coordinates rE , p , and those associated

with flexible module motion, described by coordinates 0-., (Yl s1, ... ,8)
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For the rigid modules the flexibility is considered to be localized at

the interface with a supporting module. Then K<3 , K 3 4 and K44 form a

6 x 6 matrix of coefficients. These coefficients are determined from a

separate static analysis of the localized interfacing structure, and represent

the forces resisting unit displacements and rotations of the structure at one

interface while it is fixed at the others.

The submatrix Kf Sf. corresponding to flexible module coordinates

represents the coefficients of the potential energy of the flexible module. It

is determined from a separate analysis of the module, in which the strain

energy associated with the deflection function ,m is found.

Solution of the Equations

A general purpose digital computer program (DISCUS) was written for

the synthesis of component modes for space stations, using the methodology

described above. The program assembles the mass and stiffness matrices,

and prepares the eigenvalue equation (4) for solution. The solution technique

used for the eigenvalue equation was the Householder method'(Ref. 3). The

predominant substructure motion characterizing each system mode was

found by computing the percentage of kinetic and potential energy in each

substructure. The program also produced schematic diagrams illustrating

each mode, using the Stromberg-Carlson 4020 plotter. The program was

run on a Univac 1108 computer, Exec 8 system, with a 64, 000 core capacity.

The results reported here are for a model with a total of 96 degrees of free-

dom. Subsequently, the program was modified to allow 112 degrees of

freedom.

Application to the Skylab

The Skylab consists of several large structures in clustered configu-

ration. As illustrated in Fig. 3, the Skylab contains a Saturn IV-B orbital

workshop (OWS) which is the third stage of the Saturn launch vehicle con-

verted for human habitation. The Airlock Module provides astronaut access
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to the OWS through a flexible tunnel. The Airlock Module is mated to a

Multiple Docking Adapter (MDA), a cylindrical shell structure with a for-

ward conical bulkhead, providing forward and lateral docking ports for

docking with the Command and Service Module (CSM). The CSM is a space-

craft bringing the returning astronauts to the Skylab. The CSM-MDA-AM-

OWS form the main axis of the Skylab. At right angles to the main axis,

pointing toward the sun, is the Apollo Telescope Mount (ATM). The ATM

consists of a supporting structure and an experiment package, a rigid struc-

ture bearing a number of telescopic experiments for solar observation. The

experiment package is attached with a gimballed ring system. The ATM is

joined to the OWS with a Deployment Arm (DA), a pivoted truss system

allowing the ATM to rotate into a sunward-pointing position after orbit.

Four long articulated solar array wings are attached to the ATM, and the

OWS supports two array systems, each with three wings.

A series of vibrational studies of the Skylab was made following the

evolution of the design and configurational concepts. The results reported

here are based on Ref. 4.

For the Skylab the selection of generalized coordinates was as follows:

Rigid Modules:

OWS/AM/MDA 6 degrees of freedom

ATM 6 degrees of freedom

CSM 6 degrees of freedom

Flexible Modules:

OWS Solar Arrays (2) 24 degrees of freedom each

ATM Solar Arrays (4) 6 degrees of freedom each

Canister (1) 6 degrees of freedom

Natural modes were used for all the flexible module deformation

functions. The ranges of natural frequencies for the modules cantilevered

at the interface with the space station are
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OWS Solar Arrays 0. 404-4. 811 Hz

ATM Solar Arrays 0. 224-2. 696 Hz

Canister 1. 192-7. 730 Hz

The modes were found from finite element analyses of the structures. The

ATM solar arrays and the canister were analyzed with the SNAP/Dynamics

finite element program (Ref. 5), while the OWS solar array results are

based on Ref. 6. The localized flexibility characterizing the rigid module

interfaces is expressed in the form of 6 x 6 stiffness matrices. The coeffi-

cients of these matrices were found from static analyses with the SNAP

finite element program.

All of the natural modes within the above ranges were used as module deformatior

functions. Truncation of the modes at the upper limits no doubt introduces

some error. The highly separated nature of the Skylab modes found indicates

that the given results are not significantly affected. Some additional solar

array modes would have been present (and were indeed found subsequently)

had the ATM solar array functions been truncated at a higher frequency.

Table 1 gives the mass data for the rigid modules. The results are

given for the frequencies of the lowest 65 modes in Table 2. Computer run

times were of the order of three minutes of CPU time for 96 modes, with

about one and one-half additional minutes for plotting all modes. The modes

are grouped according to the predominant component motion characterizing

the mode. Illustrations of some of the mode shapes produced on the plotter

are shown in Figs. 4-10.

All of the lowest 20 modes are predominantly solar array deformation.

The spectrum of frequencies falls into groups of almost identical values

because the Skylab has multiple solar arrays with nearly the same proper-

ties. Figures 4-8 illustrate these modes. The lowest mode characterized

by motion of a rigid module is mode 21, 0,.983 Hz (Fig. 9'), which is pre-

dominantly twisting of the ATM about its longitudinal axis. The lowest

mode of deformation of the main axis of the Skylab is mode 36, 1. 424 Hz,

characterized by bending of the CSM. This mode is illustrated in Fig. 10.
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Through the modal synthesis method, a comprehensive analysis of a

large space station is possible. The results indicate that generally the

modes tend to fall into groups with relatively uncoupled motion of separate

substructures. A tentative conclusion is that low-frequency motion of appen-

dages may be neglected in studies of the gross motion of the main components.

The modal synthesis method as used here is adaptable for other types

of analysis of space station motion. Damping effects, introduced as em-

pirical modal damping coefficients, can be included. Response studies can

be made using the mass, stiffness and damping matrices with standard com-

puter numerical methods. The effects of control forces on short-term motion

can also be included by including linearized control force laws in the system

mass and damping matrices.
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Table 2

SKYLAB MODES AND FREQUENCIES

Mode Frequency Description
(Hz)

1 .217

2 .227 ATM Solar Array Bending3 .228
4 .232
'5 .382
6 .384 OWS Solar Array Bending
7 .532

OWS Solar Array Twisting8 .533
9 .746

10 .746
OWS Solar Array Bending11 .770

12 .770
13 .801
14 .83614 .836 ATM Solar Array Bending15 .841
16 .842
17 .958
18 .963
19 .963 ATM Solar Array Twisting

20 .963
21 .983 ATM Twisting
22 1.072
'23 1.086
'23 1.088 ATM Solar Array Bending24 1.088
25 1.090
26 1.095
27 1.095
28 1.102
29 1.102 OWS Solar Array Twisting

30 1.102
31 1.102
32 1.185 Canister Rotation .

33 1.314 OWS Solar Array Bending
34 1.316
35 1.356 Canister Rotation
36 1.424 CSM Rotation
37 1.485
38 1.604
39 1.616
40 1.622 ATM Solar Array Bending40 1.622
41 1.628
42 1.923 ATM Rotation



Table 2 (Continued)

Mode DescriptionFrequency
(Hz) 

434 2.3348 OWS Solar Array Bending
44 2.341
45 2.765 ATM Rotation
46 3.008
47 3.009

ATM Solar Array Twisting48 3.009
49 .3.010
50 3.687
51 3.687 OWS Solar Array Bending
52 4.072 Canister
53 4.321
54 4.326 OWS Solar Array Bending

55 4.389 Canister Z-Translation
56 4.410
57 4.413
58 4.413 .OWS Solar Array Bending'.

59 4.472
60 4.797
61 4.797
62 4.801
63 4.801 OWS Solar Array Twisting
64 4.811
65 4.811

"-%

.A

t. .



CAPTIONS

Fig. 1 Model of Space Station Illustrating Generalized Coordinates

Fig. 2 Coordinate Systems for Time Derivatives in a Rotating, Frame

Fig. 3 Schermatic Diagram of the Skylab Space Station (three views)

Fig. 4 Mode 1

Fig. 5 Mode 5

Fig. 6 Mode 7

Fig. 7 Mode 9

Fig. 8 Mode 13

Fig. 9 Mode 21

Fig. 10 Mode 36



1-ith SECONDARY BODY1

1~~_ , 

__j~~~ jt h

PRIMARY B

\

'FLEXIBLE BODY

iBi

Fig. 1 -. 
E. L. Bernstein



ROTATING /
FRAME

FIXED
FRAME

,,

i* 2 i 2 - "E. L. Bernstein
Fig. 2

c!



E. L. Bernstein
Fig.' ;

OWS SOLAR ARRAYS

I.

r0

a:

-J
0

I0-

t o n Cc
100

k .(

.t .. _. . ..

I -. .I

. Ir



3
4~

OWS SOLA

/- o,I

/'

R ARRAYS'
I

ATM

ATM SOLAR ARRAYS/

ATM SOLAR ARRAY%

IATM

OWS
SOLAR
ARRAYS T

I\ Im. ~ usl~AMW_ A . -i
C/SM

E. L. Bern'tein
Fig. 4 

/
/

/

uw,/A l

I1 .............

~,,......'"1

.°" °° o . ,o .

-*

t



2

SOLA R- .....r .... .....
ARRAYS.

......- '.

...... .....
::::::::::::::::::::::::::::::::::::::::::::::

OWS/AM

I ........

0oSOA ' .
SOLAR ,
ARRAYS8!'RRAV 

OTM SOLAR ARRAY\

C/Sm

SOLAR ARRAY /

E. L. Bernstein
Fig. I ., K

.' is ! 4,.



1ws SOLAR ARRAYS

..... ,:----.5 / 0-0

f,4

I

ATM SOLAR ARRAY

ATM SOLAR ARRAY

I ATM

E. L. Bern'seins i;
Fig.' -

,. ! t', /e,

/

i OWS
SOLAR
IARRAYS.

I
II

I

............ ......... .. ;9 ....:

I



I2

3

rOWS SOLAR ARRAYS " .

. C

!- 

.......
IATM

\ATM SOLAR ARRAY

ATM SOLAR ARRAY

I
ATM

1E ( Jo'
; p ..- i , 

E. L. Be1rnstein
Fig .7

i
.,
.I

O S
SOLAR
ARRAYS

····
: !..

-- -- -- -

:

% ...... ;

e_.--- _ .- .



3

OWS SOLAR ARRAYSI

I ATM

ATM SOLAR ARRAY

ATM SOLAR ARRAYS

/ ~~~~~~~IX

ATM
OWS
SOLAR
ARRAYS\7

OVS/AM

I

, .

i '} // ,I *H -.4 

E. L.Bernstein
Figs¶/Kr , 7'

C/SM
\ m _ - -. i _ I t

I~~~~~

L

' ,

.,

F .
.,, -

,. / .

.. r

.,

I ¥

*J ,;t

:',!



I i S l -

E. L. B e rnstein
Fig. ' e.



ARRAYS |
\

. ·... .....: . . ...I

ATM SOLAR ARRAY/

ATM SOLAR ARRAYS, ,e

A... ....... ... .. -

CANISTER
-I- liilm ,ullln le,, ull gnlpII JIIII

\ :".. -, u,,-,,/ / A^"'
K---- -- -.-....- '- -. I

'

C/Sm

'Et. L., -Bernstein
Fig. iQ

VQ P "i

Ows
SOLAR
ARRAYS .......... I.

/:: ...- ..- . . .........

. ;.
.. '-::

Jl~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

I.....

ows

: ........- :::::: .....::-........

: ... :: ::::::

. .

.... -

01100 ....00000000~i

3

SOLAR


